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CHAPTER 1

Prologue

1.1 Study Objective and Methodology

The primary objective of this investigation was to analytically
determine the effect of a plane dielectric interface upon the radiztion
loss of a curved channel dielectric waveguide embedded in a dense substrate
and bent in a piane parailel to that of the material interface. The radiation
loss from bent dielectric waveguides is of interest for a variety of potential
applications in integrated optics. Knowledge of the factors influencing the
radiation from bend dielectric waveguides will allow the design of intecrated
optical component characteristics which, in one application, may resuit in
decreased radiation to conserve signal energy or which, in another applica-
tion, may achieve enhanced radiation effects in order to optimize the coupling
between vatious optical waveguides. An obvious example for which the conser-
vation of signal energy is of prime concern is the dielectric fiber trans-
mission 1ine used in simple éoini-to-point data transfer appiications.
Examples of integrated optical components in which some specific level of
radiation is desired include optical filters (e.g., ring resonator discrimi-
nators; cf. [1]) and optical directional couplers (cf. [2]). Figure 1.1
illustrates potential reaiizations of these latter components.

Arnaud (cf. [3]) has treated radiation loss from a slab-loaded, bent
dielectric rod, and this structure is the one described in the literature

that has the most in common with the configuration considered herein.
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Figure 1.1 Dielectric Channel Waveguides in Potential
Integrated Optics Applications




However, primarily because of the finite extent of the slab and the fact
that the refractive indices of the slab and the rod are equai, Arnaud's
problem differs significantly from that discussed in this report. Indeed,
the differences are substantial enough to preclude extensive corrzsoration
oT eitnher study's results by direct comparison.

Figure 1.2 illustrates the fundamental geometry of the problem and
depicts the coordinate reference frames chosen for the analysis. The
refractive indices of the channel waveguide, the substrate material, and
the covering material have the values n, n,s and ny s respectively.
These refractive indices are ordered according to the relation n > n2>> nys

the relation >>n, expressing what is meant by “dense" as applied to

iz ey
the substrate material. A giobal, circular-cylindrical reference Trame
with spatial coordinates r, ¢, and z has its origin at the point J, and
a local cartesian reference frame with spatial coordinates x, y, and s
has its origin at the point (Ro, 0, 0) relative to the global frame. The
extent of the channel waveguide is defined by the radial boundaries at r"

and r"" and by the coordinates z =0 and z = z", which define horizontal
planes between which the guide is confined. The quantity Ro is given by the
expression R_=(r'+r"' )2 andis defined to be the radius of curvature of the channel
waveguide.

A propagating mode with phase factor exp i{wt - koY R0¢) is assumed
to exist, where ko = whi €l is the free space propagation constant and vy
is the normalized (to ko), complex propagation constant of the mode in the
curved channgel waveguide. Given that the normalized propagation constant
for the straight channel waveguide is Ty the analysis proceeds to compute

a first order representation of vy of the form

e @ s o>0 A
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Figure 1.2 A Curved Channel Waveguide Embedded
in a Dense Substrate




where a is the normalized attenuation coefficient of tne mode. The mode
attenuation due to continuous radiation from the bend following prcpagation

through an angular sector ¢ of the channel guide is then given by the

factor exp (-akoRoo).
Once o has been determined, the study cbjective is attained via a
comparison of o with the normalized attenuatijon constant of a bent channel

waveguide embedded in a homogeneous medium.

1.2 Summary of Results

The normalized attenuation constant o' of a bent, rectanguiar dielec-

tric waveguide jmmersed in a nomogeneous medium has the general form [5]
Vo Ch kOROQ(O)
(03 '__.—'—_%—e
(kRy)
where Cn >0 and Q(0) < 0 are parameters depending upon material

characteristics of the guide (including physical dimensions) and its

surrounding medium as well as the specific mode assumed to be propagating
in the guide. As a result of this investigation, the normalized atten-
uation constant o for the bent, rectangular dielectric waveguide embedded

in a dense substrate below a material interface is found to be of the form

Ci koROQZ(O)

S L
(koRo)

[o4
where Ci >0 and q2(0) < 0 depend upon the channel guide, substrate,
and covering medium characteristics (including the physical dimensions of

the guide) and upon the specific mode assumed to be propagating in the

guide.

] .
--.C;.‘—A ” 4 5




Three observations are of importance. First, the quantities Ch
and Ci are in general unequal, as are Q(0) and q2(0) (although a
certain formal similarity between the latter two exists). Second, the
fundamental exponential dependence of both «' and o« on K_ is the
same. Third, the algebraic dependence of a' and a on Ro is distinctly
different. The (%303/2 algebraic dependence of o upon R0 arises as
the leading term of the asymptotic expansion of o and thus imparts a
lateral wave characteristic (cf. 4, Section 5.5) to the radiation 10ss
of a rectangular dielectric guide in a dense substrate below a material

5 . ,
interface. Indeed, the absence of a (5) 1leading term in the asymototic

0
excansion of o may be thought of as resulting from the first order can-

cellation of source and image field due to the presence of the interface.

G
As a neans of comparing the influence of the factors ————njg
C. (koRo)
————Lj§7§ on the radiation loss of their associated waveguiding structures,
(KoRo)
o' gnd o are plotted versus koRo for bent, rectangular dielectric wave-

and

guides whose dimensions and/or refractive indices are chosen so that

Q(0) = q2(0). This not only assures that the exponential variation with

R0 will be the same in each case, but it also corresponds to a Situation

in which propagation constant along the central axis of each guide is the
same. For the cases considered, o 1is found to be always less than o'

and is, in particular, less than an order of magnitude smaller than o'

for koRo = 500 and between one and two orders of magnitude smaller than

o' for kR, = 5000. This indicates that one may in some instances

achieve a significant reduction in the radiation loss of a bent, rectangular

dielectric waveguide by embedding it below a high contrast dielectric inter-

face in the material of greater refractive index.




1.3 Analytical Preliminaries i
This report will not present a derivation of the general form of «,

but will merely quote the result as given in [5], Chapter 9. Thus -

=_£__ e oy
> T KDp FR
0
where
Bla 2 ; a EO xH _ds 3
fw i
C = j ey X 8H - 8E x HO) aydZl (1.4)
S6s e ;

In (1.3), the integration extends over an infinite plane containing a
cross section of the channel waveguide, and s is some point chosen

outside tne bend (beyond r"') of the curved channel guide where the fields

have decayed sufficiently (cf.[2]). The fields 56 and Hg are those of
the straight channel guide, and Eg and ﬁ;'are the fields of the
straight channel traveling in the "negative"¢ {or s)-direction. The fields
OE and SH constitute that portion of the fields outside the curved
channel guide which have been reflected from the caustic or turning point
bevond which the mode must radiate in a radially outward direction. The
fundamental analytical task of this investigation was that of expressing
the fields SE and &H in terms of known quantities, i.e., in terms of
E;, ﬁ;, Y, Ry ete.

As a result of the circular-cylindrical symmetry of the global
reference frame, our subsequent analysis will be facilitated by concentra-

ting on the field components EZ and Hz’ although we must eventually

consider all of the field components. Via Maxwell's equations and standard




analysis for circular-cylindrical geometry, we find that we may express the

four remaining field components in terms of EZ and Hz’ whence

2 32 _ BHZ ) RO BEZ
(k= + 5;?) EQ = 1coko === 0y kO oo (1.5a)
(k2+§;) E = - oY k§;9H2+5—';—§ZEZ (1.50)
(k2+5—:—2—)Hr =2—§yk§E—OEZ+a—£—Z— H, (1.5d)
where o = /ﬂ;72;, = n$k§ for z > 0, k2 = nzkg e z <'0.

We will show in Chapter 2 that both EZ and HZ have Fourier-Bessel

representations of the form

£ (ro9.2) = e V¢ J £ (0r2)9 (K ar)ady (1.6a)
o]

ST AV I g

HZ(F,Q,Z) e I Hz(a,z)dv(koar)add (1.6b)
[s]

A1l of the desired field components have similar representations, and

the z-variation is such as to yeild the following equivalence of operators
: ko (ha)

for the field transforms.

For example, consider the electric field component E¢ given by

[ ]

E¢ = e-1v¢ [ E¢(a,z)dv(koar)ada (1.8)

0




A 2 -

E¢(1,z) is the field transform of EQ and (—§?-+ kZ)EQ(a,z) =
kzazﬁ 3
o o
Substitution of (1.6a), (1.6b), and (1.8) into (1.5a) and making use of

(1.7) gives
) J'(k_ar) iyR
2 L ois Vo g B /
“Ey T it Twey MR, s b (1.9a)

In a similar fashion we find the following as well:

2= CoyRo N o Jé(koar) 2 =
a EY’ s - 5 HZ P -k—o" W)——— s—i EZ (].9b)
5. iyRo g = a nf » J)) (k ar) _
ol Ve S s B Jfkgr) E, (1.9¢)
0 ) v'©o
- yRonf ! (-
.= . B2 TR T (koar) 3z 2 (1.94)
) ) v''o

The relationships (1.10a) through (1.10d) between the field (Fourier-Bessel)

transforms will be of use in Chapter 2.




CHAPTER 2

INTEGRAL REPRESENTATIONS OF THE
CARTESIAN FIELD COMPONENTS

2.1 Introduction

This chapter is devoted to finding integral representations fcr tne
Cartesian field components EZ and Hz' As mentioned in Chapter 1,
knowledge of these allows one to determine the remaining four field compo-
nents via (1.5a) through (1.5d). The components E, and H, are pre-
ferred by the circular-cylindrical geometry of our problem to the extent
that they both satisfy the homogeneous (in source free regions), scaiar wave
equation, i.e., the Helmholtz equation. This fact, together with the
assumed form of the field variation with the spatial coordinate ¢, allows
specification of the Fourier-Bessel transforms of EZ and HZ to within mul-
tiplicative factors which must be determined through the application of
boundary and source conditions. Explicit evaluation of these is the
subject of Section 2.3.

Although at first glance the final form of the integral representations
of EZ and HZ seems too cumbersome for practical use due to the complexity
of the required integrations, it will be seen in Chapter 3 that the integral
representations derived in this chapter are amenable to asymptotic analysis
when koR0 >> 1, 1i.e., when the radius of curvature of the bend channel guide

is large relative to the wavelength of the propagating fields.
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2.2 Extended Fourier-Bessel Representations for Field Solutions of the

Helmholtz Equation

Let f(r,¢,z) = ¢(r,z)e'1v¢ be a scalar field satisfying the

Helmholtz equation for source-free regions,

(V2 + kZ)F(r,¢,z) = 0, then for v = koyRo,

2,2.2
2 y2k2R @
1 9.3 3 2 00 1 .
S 822 + k°© - i ¢(r,z) = 0 (2.7)

2 2

RN _ 2.2
where, as before, k= = n]ko for z >0, and k" =n

2‘0

In this section, %(r,z} 1is a generic symbol representative of eitner

for z < 0.

Ez(r,z) or Hz(r,z), since the mathematical manipulations required herein
do not require us to distinguish these two field components. Appropriate
associations between Ez(r,z) and Hz(r,z) and the results of this section
will be made as required in later sections.

From the form of F (r,9,z) we know that there is a Fourier-Bessel

transform representation (cf. [6]) for &(r,z), whence

(s o]

#(r,z) = ; 5v(a,z)dv(koar)ada (22}
O o0
5(a,z) = kg j¢(r,z)dv(koar)rdr (2.3)
0

where J s a Bessel function of order v. We shall refer to ¢(r,z)
as the field and to ¢(r,z) as the field transform.
Substitution of (2.2) into (2.1) produces the result

2
3 2pr ol 23l = )
{5;2 + ko(n -a”) ¢v(a,z) = 0 (2.4)
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where n' = m for z >0, and n' = n, for z < 0.
If we consider z = z', where 2" < z' < 0, as a plane in which point

sources lie, and if we likewise require that the field should vanish for

|z] ==, then (2.4) has solutions

N -k uyz

o, (@,z) = Ala)e L (2.5)
-k u,z k u,z )

¢ (o,z) = B_{a)e 02" ;g (o)e © 2 2! <2< 0 (2.6)

v P n B —
k u,z '

5v (@,z) = Cla)e © - z <2z e 1)

where

u, = (az - nz)% , Reu, >0 (2.8)

1 1 1

uy = (a2 - ng);i , Re u, > 0 {2.9)

With (2.5), (2.6), and (2.7) we have determined the field transforms
except for a set of multiplicative factors dependent upon «. In the
following sections we will apply source and boundary conditions to deter-
mine these factors. At that time it will be necessary to identify our
field &(r,z) as either the electric field Ez(r,z) or the magnetic
field HZ(r,z).

To facilitate the asymptotic analysis of Chapter 3, it is desirable
to extend the range of integration in (2.2) to the negative a axis. To

do this we recall that
3y(oa) = %t (o0) + #?) (a)y

and employ the circuital relations for the Bessel functions so that (2.2)

becomes

Bt gl —— el I Y R
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Figure 2.1 illustrates the integration contour of ¢(r,z) in tne compiex

a-plane. The branch cuts associated witn n, and n, are those which must

i

not be crossed if we are to insure that Re u, > 0 and Re u, > 0. Sone

i &

slight loss is assumed in both the covering medium and the substrate in
order to impart a small imaginary component to both N and Ny The branch
cut running a]on§ the negative real axis insures that H&Z’(koar) in (2.10)

is sinale-valued.

2.3 Evaluation of the Field Transforms

2.3.1 Equivalent Polarization Sources

The concept upon which the analysis of this section rests is that of
equivalent polarization currents (cf. [7]) which can be used to convert
the sourceliess three medium problem into an equivalent two medium problem
with sources below the dielectric interface. This approach attritutes the
fields existing outside the dielectric channel to the radiation from an
array of polarization current sources contained within the geometrical
boundaries of the channel waveguide but embedded in the substrate medium
only. This circumstance is illustrated in Figure 2.2.

The justification for this procedure follows from a consideration of
the differential form of Ampere's Law, i.e., the curl H relation from
Maxwell's equations. In the channel region, we have

2

—
~N
.
-—
—~

~—

VxH=1iwn eoE

and in the substrate region the fields must satisfy
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Figure 2.1 The Contour of Integration for &(r,z) in
the Complex a-Plane




(d) THE ORIGINAL THREE MEDIUM PROBL-M
WITHOUT SOURCES

///

THE EQUIVALENT TWO MEDIUM PROBLEM
WITH POLARIZATION CURRENT SOURCES

Figure 2.2 Alternative, Equivalent Problem Representations




e
V x H = 1wn2€OE (2.12)

In (2.11) we add and subtract j\Nngeof, then (2.11) becomes
VXH=iw(n2—n2)”€+iwne§ (2.0
2 “o 20 \ESEER

We now identify the first-term on the RHS of (2.13) as the equivalent

polarization current density jp, thus

= R
Jp iw (n2- n~) LOE (2.14)
and (2.13) is now
TxH=9 +iwnekF (2.15)
p %0 3=

Comparison of (2.15) with (2.12) shows that we may now characterize
the fields below the dielectric interface through the use of (2.15) alone,
as long as we keep in mind that the equivalent polarization currents exist
only within the region occupied by the channel guide. Since the only
refractive index that appears explicitly in (2.15) is Ny, Our problem is
seen to be equivalent to that of a two-medium interface problem with
sources as illustrated in Figure 2.2b.

It should be emphasized again that to solve the problem discussed
herein we assume that the fields 56 and ﬁ6 in the channel guide are
known, and the implication of this assumption in the present discussion is
that jb will be given explicitly as
g 2) £

Jp =iw (n2 -n eoEo (2.78)

We have thus converted information about known channel fields into a known

distribution of equivalent current sources. Since 56 will in general be
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capable of resolution along each of the three mutually perpendicular axes
of the local coordinate system (cf. Figure 1.2) (2.16) reveals that we

will in general have polarization currents directed along all three of the

local coordinate axes. The remainder of this chapter is devotea ©o finding
the field transform amplitudes associated with each unique component of the
polarization currents. The total electric and magnetic fields outside tne
channel will ultimately be constructed via superposition of the results

obtained for the special cases to be considered currently.

2.3.2 z-Directed Phased Arrays of Polarization Currents

We consider a z-directed, phased array of polarization currents
located at a radius r' from the z-axis and a distance z' below the
dielectric interface as illustrated in Figure 2.3. Analytically, polari-
zation line current densities of unit amplitude along the z-direction are
given by

3p = 326 (z-2') 6(r-r‘)e'iv¢ (2.17)

hence reference to (2.16) gives

"'__. 22 A [P
Jp = jw(n -nz)eOEOZder dz (2.18)

To facilitate the analysis of this section we shall consider a

z-directed electric type Hertzian potential of the form

oo

ﬁe(ra(b’Z) = _a-ze-1\)¢ J ﬁi(a,z)\]v(kol"a)ada,
o]
so that -
né(r,z) = f f &(a,2)9, (k ro)oda (2.19a)
o}
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Figure 2.3 A z-Directed Phased Array of Polarization Currents
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and

2 [_e W
r Hz(r,z)dv(kom)rdr (2.19b)

J
0

~
m
N

e =
Z(a,z) k
In this section we will be dealing with the cartesian component cf the

electric field only, because HZ = 0 for a z-directed Hertzian potential.

The Hertzian potential satisfies the inhomogeneous wave equation

(cf. [8])

= -J
(v2 + k]2 2)ne = ——E—— (2.20)
1ws0n2
where k],2 =, Zko’ thus using (2.17) in (2.20)
(7 + i JIE(r,z) = - (—L—) 6 (z-2") & (r-r') (2.21)
2 1ws:on2

Substitution of (2.19a) into (2.21) and use of the Fourier-Bessel
representation of & (r-r') yields

2 -kzr'

3 22 e o
—5 - kru M(a,2) = [ J (k r'‘a)é (z-z2') (2.22)
{622 0 7,2} z 1'weon§J v'o

u = (nz2 = n2 )!5
1F52 1,27 °
Following the same line of reasoning as in Section 2.2, we have the

where, as in (2.8) and (2.9),

following solutions for ﬁi(d,z) from (2.22):

- -k u]z

I (a,2) = Ala)e 2 s 1 2 38 {2.2%)
y -k u,z U,Z

Hi(a,z) . Bp(a)e 02", Bn(a)e 0"2 » B'EZ20 (2.2W)
~ e -k uzz

M (a,z) = Cla)e G T 25w (2.23¢)




We solve for the transform coefficients A{a), Bp(a), Bn(a), and
C(a) via application of source conditions at z = z' (two equations) and

boundary conditions at z = 0 (two equations); this yields

2 '
u,n, ., kK J (kr'a)) ku,z
Aa) = —521— {‘0 0 —} e 02 (2.24a)
u]n2 + u2n] 1u2 weon2
kJd (kr'a)y kuz'
B () = oY 0 e 0?2 (2.245)
12uzweon2
2 2 '
k 3 (k r'o)r' u,ns - u,n k u,z
Bn(a)= 'ov 02 {2; 1%}802 (2.24¢)
12u2 weon, u2n] + n,u,
k J\)(k PiEL Y —kouzz' u2n]2-u]n§ K uzz'} )
Clle) (AL 1o 5 e + 5 5~ [k 0 { (z.24d)
12u2ws n2 l u2n]+u]n2 j

We can now use (2.24a) through (2.24d) in (2.23a) through (2.23c) in

order to produce the following expressions for the potential transforms

[} [ 2 I_

=8 kodv(kor‘ a)r 2u2n2 ko(uzz u]z)
it Z((X,Z) = 2 2 2 e Y

12u2 W sonz u]n2 + uzn]

2 20 (2.25a)

RLI G et -k u,lz-z'l un2-u n2 Ko ezt ) iy
S er . OLVEE(G o2 21 172 ) 2
Hz(a,z) A 5 e i 5 ,

12u2we0n2 u2n] +u]n2

z2<0 (2.25b)
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Substitution of (2.25a) and (2.25b) into {2.19a) produces the desired
integral representations for the Hertzian potential in the covering region

(z > 0) and the substrate region (z < 0):

W u k {u,z'-us2) _
I:i‘(r,z) = -i‘;or' J{ (———7——2—-——-)J (k. r'a)d (k. ra)e® e ' -*U’i
Uiy + oy 2
z>0 {2.28a)
e a 2 '
& _ciggrt j KUyl Z-2'| rupny - ugns k0u2(2+z ))
i Z(raz) - 2 ) e + 2 2 e }
2n2 4 { Uphy * ugn, {
! ady < (2.26b)
J\_(kor \x)J\)(kora) o , 2<0 (2.26
wWu
where we have used -E—Q = Ty the intrinsic wave impedance of free-space.
0

Proceeding as was done to extend the range of integration of (2.2) to

yield (2.10), we may extend the range of integration in (2.26a) and (2.26b)

to give
it u k (u,z2'-uyz)
Hg(r,z) = 20 Jf . [ 2 ] H(z)(koar)Jv(kor'a)e ol
wp 1T U, + UoNY
ci R z2>0 (2.27a)
u
2
i r! -k u,|z-2'| u n2-u n2 k u,(z+z")
e _ Ty ( o¥2! AL 2
HZ(Y‘,Z) 5 e + 5 = e
4n2 & n uZn] +u]n2
H(Z)(k ra)d (k r'ae) 22 ) (2.27b)
0 o} u2 3 ’
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2.3.3 r-Directed Phased Arrays of Polarization Currents

We consider an r-directed phased array of polarization currents located
at a radius r' from the z-axis and at a distance z' below the dielectric
interface as illustrated in Figure 2.4. Figure 2.4b is a cross-ccctional
view while Figure 2.4a is a view as seen from the covering medium looking
down on the z-axis.

Analytically, the polarization current sources of unit ampiitude are

given by
ivg

(<2
]

Erd (z-2') 6 (r-r')e” (2.28)

hence

]

J

. 2 2 H ' '
5 iw(n -n2)€OEOFJ dr'dz (2.29)

p

The approach taken in this section is to consider directly the
cartesian components of the electric and magnetic fields. We have seen
in Section 2.2 that EZ and HZ satisfy the Helmholtz equation in source-
free regions and thus that their associated field (Fourier-Bessel) trans-
forms satisfy equations (2.5), (2.6), and (2.7). In light of the results
in Section 2.3.2, we will hypothesize from the start the following forms

for the field transforms
-ko(u]z-uzz )

8."Ma,z) = A a)e , 220 (2.30a)
k u,(z+z') -k u,(z-2")
se,m & BCsMm 02 &My 3. 0 2
0. (a,2) = Bor (a)e + B (a)e
"< 220 (2.30b)
5 k u,z
¢$’m(a’2) = Ci’m(a)e DL &k 2 (2.30c)

where we will make the associations 5$

we
m.

and 5? 4 ﬁz, #ad the subscript
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Figure 2.4 An r-Directed Phased Array of Polarization Currents
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r indicates that these are field transforms associated with r-directed
polarization currents.

In order to compute the eight, as yet unknown coefficients of the

field transforms in (2.30a) through (2.30c), we must determine ana apply

~

the boundary and source conditions applicable to 5$ and QT . This process

is presented in detail in Appendix A and yields:

‘Am = 2 Bm ] 1‘
r U + uy pr (2.31a)
U, -u
m 2 ] m
B = &~——— B 2.31b
nr u2-+u] pr ( )
2un
AbH= —-2—2—2-——-2— Bg (2.31¢)
uzn] +u]n2
2 2
u,n;y - u,n
B¢ = 41 —1% B> (2.31d)
LD L 1L
U, - u K u,z' -k u,z'
m 2 1 2 02 m
= - B 2.3
Dr { Uy + U 2 € } pr (2.37e)
2 2
U,n- - Uyn K u,z' -k u,z'
o‘;:{——-—-—-———zé L2 e°2-e°2}sgr (2.31f)
R )
where Bgr and Bgr are given by
; 2
ivyR k
B'Sr = ——2%2—"— 9, (kar') (2.32a)
o L ik (k ar) (2.32b)
B- = ————— J'(k ar' 2.32b
pr 12”5 vio

Substitution of (2.31a) through (2.31f) into (2.30a) through (2.30c)

yields the following forms for the field transforms:
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- 2u,n -k (u,z-u,z')
CREEIEN A s L S (2.33a)
uphy W
u,n; - u n2 Ku(ztz")
& _ e 21 172 o2
d r(a,z) B . 5 5= e
P UalE + Wam
21 12
-k uylz-2"] , ‘
+ sgn[(z-z')]e 2 <0 (2.33b)
and
2u -k (u;z-u,z')
3 m, = gl 2 o F T2
vr\a,z) Bpr T e , z>0 (2.34a)
U, =u k u,(z+z') -k u,|z-2"|
~m _ oM sl 02 02
q)r(O.,Z) = BPY‘{UZ i u] e 222 } > B
(2.34D)
z<0

where sgn[(z-z')] in (2.33b) is the numerical sign of (z-z').

With the field transforms thus specified, we may employ (2.10)
directly in order to generate the desired integral representations for
the cartesian components of the electric and magnetic fields in the

covering and substrate regions, hence

¢S(r,z) = ESEQ£L~— fw J'(k ar')H(z)(k ar)
: i4n5 sip v o TV o
2
2u,n -k (u,z-u,z')
[__zﬁz____g_] gha b 2 o2ds 250 (2.35a)
UBRE Y
o]
Bl o
~ @ 00 ] ] (2)
$ (r,z) = . d'(k ar')H'“/ (k ar)
r i4n§ g U9 v' 0 v 0
2 2
U,ny = uU,n k. o, {zFZ' ) k. u,{z=2"']
{ 2 ; L g R + sgn[(z-2')Je ©?2 ‘} o da
+
L 40 i 1L
220 (2.35b)




m iYROkO r .
® r(r,z) = ———7r————J_iﬁ Jl (ke et il (koar)
g
2u -k u,(z-2")
e 07 w20 (2.36a)
1 72 2
. 2
'iYR Kk >
_ 00 w2 or
¢ (r.z) 5 )i J, (kar' JH (koa.)
g
Un-U k u,(z+z') -k u,|z-z",
{u2+u] e 02 +re © : } = , Z20 (2.36b)
2 1 Uy

where (2.35a), (2.35b), (2.36a), and (2.36b) are integrated along the
contour shown in Figure 2.1.
Finally, with reference to (2.27a) and (2.27b), we see that
(2.35a) and (2.35b) can be related to Hi(r,z) by
=
ar'az'

e - L oe

@r(r$z) =r r' HZ(F,Z) (2.37)
2.3.4 ¢-Directed Phased Arrays of Polarization Current

As per Section 2.3.3, we consider the cartesian components

ég A E, and ¢2 a H, of the electric and magnetic fields in the cover-
ing and substrate media. The procedure for finding integral represen-
tations of these cartesian field components is very similar to that
followed above. Indeed, the only formal difference between the case
currently under consideration and that of the r-directed polarization
currents is that the unit vector in the representation of the polarization

current densities changes from Er to a with the result that (A.3c)

¢ ]
and (A.3d) [cf. Appendix A] are replaced, respectively, by
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(b)

Figure 2.6 A ¢-Directed Pgased Array of Polarization Currents
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_§_~m | __@_ 1 - R '
v %(a,z)I = ¢(a,z) k® r Jv (koar )
z=z'+ z=2'-
5%az“ﬂ —5%az'ﬁ = vkg_ 3 i o)
i = e | we ng Ve
0

Comparing (2.38a) with (A.3c) (recalling v = ykoRo) we see

. 3 ] 3 ] ] i
-1yRokko(koar ) > koar Jv(koar )

and comparison of (2.38b) with (A.3d) shows that

2 2

kS ¢ ar' R k¢
0 "0 ' ) 0 0°0 '
— Jylkar') >y === J (kar')

1n2 n2

The changes indicated in (2.39) and (2.40) manifest themselves in the
values of BE¢ and BS . Thus, (2.32a) and (2.32b) are replaced by

Po
7 -kgar'
Bp¢ = —?UZ——'— Jv(‘kooﬂ” )
2
I YROkOCO '
Bp¢ = 2n2 Jv(koar )
2

(2.

—
™)

2

(2.

(2

(2.

38a)

(7S]
(o)
|8}

39)

40)

41a)

41b)

For the case of ¢-directed polarization currents, equations (2.33a),

(2.33b) and (2.34a), (2.34b) are reproduced except that the suoscript r

is replaced by the subscript ¢ . Using (2.33a) through (2.34b) modified

for ¢-directed currents in (2.10) we have
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2 =)
YR ¢ k
e - 0°0 0 sy 29
¢¢(r,z) - ———Z—E—— [ i Jv(koar )Hv (koar)
o g
2 )
2u,,n2 -k (u]z-uzz )
_—117—__—7? e © ada , z>0 (2.62a)
U Ny + uyn
21 172
2 oo
YR z k
e = 0’00 ( 1 (2)
¢&r¢) —~Z;T— J-m.%(%ar)% (Hﬁﬂ
2 oop
2 2
u,ns - u.n k u,(z+z") -k u,|z-z"|
C ; 1 g e 02 + sgnl(z-z')le ° : oda
u2n]+u]n2
2=l (2.42b)
2
_k r,l a0
m \ = 0 { (2)
¢¢(r,z; 5 J¢ (k ar' JH3 7 (k or)
(z-2') 2
2u k u,(z-z'
—L_ ¢ 0 ——“ud"‘ 220 (2.82¢)
Jj 152 2
2 .
o (r,z) = -k J'(k r')H(Z)(k r)
[} oa Y oa
Uy = Uy Kolp{z2! ) S L 220 (2.42d)
iy ¥y © 02

Upon comparison of (2.42a) and (2.42c) with (2.27a) and (2.27b),
respectively, we see

iyR k
¢$(r,2) = —00 4

e
- 57! nz(r,z) (2.43)

Finally, comparison of (2.42c) and (2.42d) with (2.36a) and (2.36b),

respectively, yields

m % -r' B A
®¢(Y,Z) = iYRok ar" ¢ (r,Z) (2.44)
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2.3.5 The Ancillary Potential Integrals Ve’ Vm

In terms of the Hertzian potential Hi of Section 2.3.2, we can
write the associated cartesian component of the electric field og as

e 3 2 . P Ary
QZ(Y',Z) = (—-——2- + k]’z)“e \C,-fsi

32
Now, considering (2.27a) and (2.27b) we define the scalar, electric,

ancillary potential Ve by

-ig e
= (_sen. (2)
Ve(r,z) ( > _1ndv(kor‘a)Hv (kora)
Ny e
2
2u,n k (u,z'-uy2)
Sl e 2 1 250 (2.46a)
u]nzﬁ-uzn] 2
_]'C it
= 0 f ' (2)
Ve(r,z) = 2| . Jv(kor a)H; (kora)
4n Lkl
2 e
u2n$ - u]ng kou2(2+z') -kouzlz-z'l —_
—__2_—_-_——2- e + e ——u'—‘ 9 zZ < 0 (2.46b)
uzn] + u]nz 2
Having thus defined Ve’ we see that
oS(r,z) = r' —éz + k2 vV (r,z) (2.47a)
ZAN 822 1,2 e*? )

In a like manner, considering (2.46a) and (2.46b) along with (2.35a)

and (2.35b), we have

2
4>$(r,z) 2 ——é————-ve(r,z) (2.47b)
ar'sz'

Consider now the definition of the scalar, magnetic, ancillary

potential Vm given as




vinea) = 08 | ot ) (k ra)
m' o L v
JomiT
2u -k {uyz-u,z')
=t =52 ade 59 (2.482)
Uyt us
vima) = 62 [ gk rR) (ke
- (2 } i )
xg
u,~u. kou(z+z') -k _u,|z-2'
B g 2SS o g w2
L Uz

Comparison of (2.48a) and (2.48b) with (2.36a) and (2.36b) gives

s M = . ! AN~
o arsz) = (3YR k )V (2.45¢)
and a similar comparison of (2.48a) and (2.48b) with (2.42c) and (2.42¢)
yields
op(r.z) = -r' Loy (2.48d)
We can conveniently summarize the representation of the total

cartesian field components 8¢ and o™ due to polarization currents in

the channel region in terms of the potentials Ve and Vm, i.e., Since

e . e e e m _ .m m
o} ®Z+®r+¢¢ and ¢ ®r+¢>¢ 5
we can write
2 -
‘e = ) 2 V"}, g =
®(r,2) EyRoko ] 2 {;22 k],;} el | “or
LA B ot 1 I i
. = 1we°(n -n,) J ds g = { . !l %o;
¢ Guide | iYyR K E
(%)) Cpad oom _J L oz

Section
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CHAPTER 3

ASYMPTOTIC EVALUATION OF THE ANCILLARY
POTENTIAL Ve

3.1 Introduction

The developments in Chapter 2 have led to a representation of the
Cartesian field components exterior to the curved channel waveguide in
terms of the fields of the straight channel waveguide and tne anciilary
electric and magnetic potentials Ve and Vm’ respectively. In this
chapter we will concentrate upon determining an analytical expression
for Ve that is more useful in practical applications than is the forr.ul
representation in equations (2.46a), (2.46b). The ancillary potential Vm
will be discussed only to a limited extent since the analytical procedure
employed to simpliify Ve can be applied without modification to Vm'

The analytical approach to finding a more useful representation for
Ve and Vm begins with application of the Debye expansions for Bessei
and Hankel functions of large order and argument to the integrands of
(2.46a), (2.46b) and (2.48a), (2.48b). Once accomplished, this step is
seen to facilitate an asymptotic analysis of the modified integralis. In
particular, a steepest descent evaluation is pursued for Ve which
yields a first order representation when koRo > 1.

In Chapter 4, the asymptotic expression derived for Ve is used to
compute the attenuation constant due to continuous radiation loss from

a bent rectangular waveguide after assuming a specific form for the straight

guide modes.




(98)
(0%}

3.2 Moditication of the Integral Representations of Ve’ v

m
3.2.1 Changing the Contour of Integration

As we have noted previously, the contour over which the integral
representations of Ve and Vm are integrated is that illustrated in
Figure 2.1. We now consider the closed contour Tc shown in Figure 3.1
which is composed of the contour o which lies along the Re a axis

as well as the contours Y], YZ’ YR > Yp > Vg - Tne contours v. anc
] ‘ '3 '

2
Yo 1ie along the branch cuts associated with ny and Ny respectively,
and contours YR.» YR and YR 1lie on the radius of a semi-circle of

1 2 3
radius R. We will eventually consider TC as R > «, whereupon
will coincide with our original contour of integration for Ve anc v

For the moment, however consider the integrals

K (2™ e 2l)
é 2 ] da 9 Z_>_O \J.A.a

Fla) e ©
k(2% 2") -k u,lz-z"|
I = § {G(u)e 02 + Hla)e © 2 } do, z<0 {3.1)
¥e

where F(a), G(a), and H(a) are analytic everywhere within and on Tc and
tend uniformly to zero as R+®. Since there are no singularities of the
integrand contained within Fc’ the residue theorem assures that IG= IL= o,

so (3.1a) and (3.1b) give, respectively,

[@--fe-[©- (@ (3.22)
Yo b ¥ YR]JYR2+YR3
L(G,H) = - f(G,H) f (G,H) - f {(G,H) (3.2b)
0 " Y2 Vi, 4% ¥
1R, Ry
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Te=yotyity:
TYR,TYR,T YRS

Figure 3.1 The Contour l“c




where we hive symbolized the integrand of (3.la) by (F) and the integranc
of- {3 1b) by (6.H).
If now we let R + =, we may invoke Jordan's lemma to justify tne

claim that both | (F) and | (G,H) vanish (recall z'< Q).

Yo *Yp tY Y ey O
RyTR, R, R TR, Ry

Also, the uniform tendency toward zero of F{a), G(a), and H(a) together
with the exponential factors in (F) and (G,H) assure the convergence of

the remaining integrals, whence (3.2a) and (3.2b) become

i ' ‘

Fy=-1 (F)-| (F (3.33
J.( ) J (F) J (F) (3.33)
w7 A Y2
a f i .

C(GH) = - (@) - (6H) (3.3b)
ooe-'HT Y] Y2

where Y1 and Y, are now contours which "wrap-around" the full extent
of their associated branch cuts.

Notice that both Ve and Vm take the form of (3.3a) for 2z > 0,
and that both V_ and V= take the form of (3.3b) for z < 0. Thus,
we can now transfer our attention from an integration of the ancillary
potentiais Ve and Vm along the Rea axis to a pair of integrals

which, in each case, follow the branch cuts of Uy and in the lower

2
half of the a-plane.

3.2.2 Application of the Debye Expansions

Our objective in this section is to find an asymptotic representation

for the product Jv(kor'a)Héz)(kora) which appears in the integrands
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of the i.iegral representations of Ve and Vm' Since we are interested
in geometries for which kOR0 >> i, land Since P = YkoRﬂ‘ we are certainly
dealing with Bessel and Hankel functions of large order. Likewise, since
we are interested in fields just beyond the outer radius of the channel
guide, both r' and r are on the order of Ro; so, for a of suffi-
ciently large modulus, the Bessel and Hankel functions we encounter are
of large argument as well. The requirement that o be of sufficient
modulus means that there is a region about the origin of the a-plane

of radius 0(E~%—) within whicnh we cannot allow our integration contour
to pass. Thisopgesents no significant difficulty since we are free to
deform the contours Y, and Y, onto the improper Riemann sheet (if
necessary) for a finite distance and hence to circumvent the forbidden
region, whereupon we re-enter the proper sheet and continue integratirg
along the branch cuts. We will not consider this subtlety in greater
depth since we will ultimately prosecute a saddle point evaluation of

our integrals for which the saddle point is well removed from regions
where the large argument assumption is invalid.

The Debye asymptotic expansions for large order and argument may

be written in the form (cf.[5], [9])

(2m) R (vz) & (1 - 28) % VF(2) (3.4a)
(2m) ™Y (vz) » —2(1-22) %ev(2) (3.4b)
where 0 < Rez <1, and
i
£(2) =tanh~X1 - 25" = (1-29) (3.4¢)
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